24.10.06

Asignatura pendiente - 4


Antes había mencionado que a la hora de resolver problemas, el uso del sentido común nos lleva por caminos engañosos. Me encuentro esta semana con otra historia de Adrián Paenza, en Página12. Posiblemente ya la han leído en otra parte. Igual, disfrútenla en su versión con acento porteño.


Historia de Carl Friedrich Gauss
Por Adrián Paenza

Muchas veces solemos decirles a los jóvenes que lo que están pensando está mal, simplemente porque no lo están pensando como lo pensamos nosotros.

Y les enviamos un mensaje enloquecedor, equivalente al que hacemos cuando les enseñamos a hablar y caminar en los primeros doce meses de vida, para pedirles que se queden callados y quietos en los siguientes doce años.

El hecho es que esta historia tiene que ver con alguien que pensó diferente. Y, en el camino, resolvió un problema en forma impensada (para el docente).

La historia se sitúa alrededor de 1784, en Brunswick, Alemania.

Una maestra de segundo grado de la escuela primaria (de nombre Buttner, aunque los datos afirman que estaba acompañada por un asistente, Martin Bartels también) estaba cansada del "lío" que hacían los chicos, y para tenerlos quietos un poco les dio el siguiente problema: "Calculen la suma de los primeros 100 números". La idea era tenerlos callados durante un rato. El hecho es que un niño levantó la mano casi inmediatamente, sin siquiera darle tiempo a la maestra para que terminara de acomodarse en su silla.

-¿Sí?- preguntó la maestra mirando al chiquilín.

-Ya está, señorita- respondió el pequeño. El resultado es 5050.

La maestra no podía creer lo que había escuchado, no porque la respuesta fuera falsa, que no lo era, sino porque estaba desconcertada ante la rapidez.

- ¿Ya lo habías hecho antes? - preguntó.

- No, lo acabo de hacer.

Mientras tanto, los otros chicos recién habían llegado a escribir en el papel los primeros dígitos, y no entendían el intercambio entre su compañero y la maestra.

"Vení y contanos a todos cómo lo hiciste."

El jovencito se levantó de su asiento y, sin llevar siquiera el papel que tenía adelante, se acercó humilde hasta el pizarrón y comenzó a escribir los números:

1 + 2 + 3 + 4 + 5 + ... + 96 + 97 + 98 + 99 + 100

"Bien -siguió el jovencito-. Lo que hice fue sumar el primer y último número (o sea, el 1 y el 100). Esa suma da 101. Después seguí con el segundo y el penúltimo (el 2 y el 99). Esta suma, vuelva a dar 101. Luego separé el tercero y el antepenúltimo (el 3 y el 98). Sumando estos dos, vuelve a dar 101. De esta forma, "apareando" los números así y sumándolos, se tienen 50 pares de números cuya suma da 101. Luego, 50 veces 101 resulta en el número 5050, que es lo que usted quería.

La anécdota termina acá. El jovencito se llamaba Carl Friedrich Gauss. Nació en Brunswick, Alemania, el 30 de abril de 1777 y murió en 1855 en Gottingen, Hannover (también en Alemania).

Gauss es considerado el "Príncipe de la Matemática" y fue uno de los mejores (sino el mejor) de la historia.

De todas formas, no importa aquí cuán famoso terminó siendo el chiquito sino que lo que yo quiero enfatizar es que en general uno tiende a pensar de una determinada manera, como si fuera "lo natural".

Hay gente que desmiente esto y encara los problemas desde un lugar diferente. Esto no significa que los vea así a todos los problemas que se le presentan, pero eso importa poco también.

¿Por qué no permitir que cada uno piense como quiera? Justamente, la tendencia en los colegios y las escuelas, e incluso la de los propios padres, es la de "domar" a los chicos (en un sentido figurado, claro), en donde lo que se pretende es que vayan por un camino que otros ya recorrieron.

Es razonable que así sea, porque es el que ofrece a los adultos, sin ninguna duda, mayores seguridades, pero que inexorablemente termina por limitar la capacidad creativa de quienes todavía tienen virgen parte de la película de la vida.

Gauss, y su manera sutil, pero elemental, de sumar los primeros 100 números, son sólo un ejemplo.

Nota: ¿Cómo haría usted para sumar ahora los primeros 1000 números? ¿Y los primeros n números? ¿Es posible concluir una fórmula general?

La respuesta es sí:

1 + 2 + 3 + ... + (n - 2) + (n - 1) + n = {n (n + 1) }/2

© 2000-2006 www.pagina12.com.ar|República Argentina|Todos los Derechos Reservados


En las siguientes semanas buscaré algunos acertijos, para ir entrenando al cerebro en esa tarea inconclusa de aprender a pensar.

Categoría: , , ,

4 comentarios:

  1. Ya había escuchado esta anécdota, pero no recordaba que el protagonista había sido Gauss. Gracias por refrescarnos la memoria.

    ResponderEliminar
  2. Ains! Me acordé las historias de mi profe de Mate "El hombre que calculaba"... y además de otros truquitos que me enseño el padre ibáñez... a ver... Por ejemplo. La Tabla del 9, escribir en una columna los números del 0 al 9 y en la siguiente del 9 al 0... ta ta... la tabla del 9 (que burdo lo mio jiji)

    ResponderEliminar
  3. Vaya, interesante.
    dejaré de imponerme con mi hija. (de todas formas siempre sale mil pasos adelante de mí)
    Saludos!

    ResponderEliminar
  4. Arbolario:

    Yo tambien la conocía de manera parcial, sin los detalles del nombre de la maestra y otras cosas.

    Aniuxa:
    ¿Burdo? Para nada. Por cierto, el libro que mencionas es muy interesante para eso de los problemas aritméticos.

    Ixquic*:
    Y habrán cosas en las que tu irás adelante. Es lo bueno de trabajar en equipo: nadie va adelante, nadie se queda atrás.

    ResponderEliminar

Nota: sólo los miembros de este blog pueden publicar comentarios.